PROBIOTICS AND VITAMIN D FOR SKIN HEALTH IN CHILDREN

Eczema, also known as atopic dermatitis, affects many infants and children. Australia and New Zealand have some of the highest incidences of eczema in the world^{1,2} with the latest statistics showing at least 20% of children under the age of 2 years have eczema, whilst some reports showing incidence being as high as 1 in 3 (38.5%) in infants^{3,4,5,6}. Disruption of the skin barrier, as well as irregular immune system responses that favour an allergic response, have both been implemented in the pathogenesis of eczema⁷.

This document will investigate & explain:

- 1) Eczema and the Gut
 - a. The Immune System Response
 - b. Gut and Skin Integrity
 - c. Vitamin D and the Microbiome
- 2) The Benefits of Eczema Shield Kids for Eczema in Children
 - a. Modulating the Immune System to Reduce Atopic Response
 - b. Supporting Gut Integrity
 - c. Supporting a Healthy Microbiome
 - i. With Probiotics
 - ii. With Vitamin D
- 3) Clinical Evidence to Support the Use of Probiotics in Eczema
- 4) Dosage Considerations
- 5) Safety Information
- 6) References

1) Eczema and the Gut

The link between the gut and the skin has long been established, ⁸ even if it is not yet completely understood. ⁹ Dysbiosis of the gut is implicated as a large contributing factor to disorders of the skin, particular inflammatory conditions. ¹⁰ The main basis of this relationship is the way the microbiota interacts with the immune system to modulate inflammation, as well as barrier integrity in both the skin and the gut. ¹¹

Probiotic Strains and Nutrients That May Assist

Lactobacillus rhamnosus (LGG®)

Bifidobacterium animalis ssp lactis (BB-12®)

Cholecalciferol

(Microencapsulated* Vitamin D)

Clinical Applications

- Modulating the immune system to reduce atopic response
- Reduce mild eczema symptoms
- Support the microbiome

*Microencapsulation is a process which coats the ingredient particles – in this instance it prevents an interaction between the vitamin D & supports stability of the probiotic strains (ensures viable live bacteria)

LGG® and BB-12® are trademarks of Chr. Hansen A/S

a. The Immune System Response

Given that over 70% of the body's immune system is in the gut,¹² it makes sense to look to the health of the gastrointestinal tract (GIT) to support balanced systemic immunological responses. Research indicates that supporting the microbiome is essential for immune development and maturation.¹³ The composition of the gut microbiota modulates T helper cell activity by influencing two key mediators, dendritic cells (DCs)

PROBIOTICS AND VITAMIN D FOR SKIN HEALTH IN CHILDREN

and T regulatory cells (Tregs). ¹⁴ DCs reside in an immature state throughout the gut mucosa, and mature in response to stimuli presented by specific proteins on the outer surface of gut microbes. ¹⁵ After maturation, DCs enhance the production of Tregs and further up-regulate anti-inflammatory cytokines, transforming growth factor beta (TGF- β), interleukin 4 (IL-4) and IL-10, whilst down-regulating proinflammatory cytokines, tumour necrosis factor alpha (TNF- α), IL-6 and interferon gamma (IFN- γ). As a result, these cytokines regulate T helper 1 (Th1) activity against infection as well as antibody-inducing activities of T helper 2 (Th2) cells. ¹⁶

In addition to this, immunoglobulins produced by B cells, specifically, secretory immunoglobulin A (slgA) are a key player in the mucosal immune response within the GIT; functioning as part of the first line of defence against the external environment. ^{17,18} In a process known as immune exclusion, slgA clears pathogenic microorganisms and other antigens from the luminal environment. It does so by blocking access to epithelial receptors (preventing pathogenic adherence to the mucosal lining), entrapping pathogens in mucosal secretions, and promoting their removal via peristalsis. ¹⁹ Importantly, slgA also regulates immune tolerance to benign antigens, such as food antigens and commensal flora, ²⁰ contributing to a protective yet tolerant mucosal immune response to a range of stimuli. Intestinal bacteria also influence this antigen recognition and differentiation via pattern recognition receptors, known as toll-like receptors (TLRs). Dysregulation of this function of slgA, or of the commensal microbiome, could mean that usually benign antigens have the potential to illicit an allergic response, which is instead an immunoglobulin E (lgE)-mediated response, leading to release of inflammatory mediators into many systems, including the skin. ²¹

As an allergic condition, eczema presents with an imbalance in the ratio of Th1 and Th2 immune cells and consequently, an imbalance of the inflammatory cytokines expressed by these cells.²² These factors result in irregular immune system activity that skews towards a Th2/IgE response, and a tendency to be overly sensitive to allergens.²³ It is this imbalance that supplementation with probiotics aims to correct.

b. Gut and Skin Integrity

Gut barrier integrity is important to protect against bacterial translocation (when enteric bacteria can cross the intestinal mucosal barrier and be found in remote tissues) as well as prevent immune dysregulation.²⁴ The integrity of the intestinal barrier depends on a complex of proteins that make up different intercellular junctions, including tight junctions (TJs).

Disruption of TJs by proinflammatory factors elevates TJ permeability (Figure 1),²⁵ thus increasing the likelihood of a systemic cycle of immune activation and inflammation,²⁶ as antigens, food, and microbes cross the mucosal barrier and cause an allergic response, aggravating the conditions associated with this response, such as eczema.²⁷ The production of short-chain-

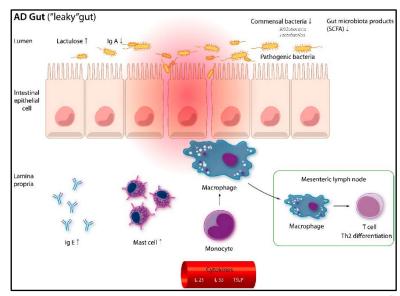


Figure 1: Disruption to TJs due to dysbiosis and consequent lack of SCFAs. Monocytes migrate and differentiate into macrophages due to a response to inflammatory cytokines. T cells mature into Th2 cells due to an increased exposure to luminal antigens. Cytokines also stimulate an increase in expression of IgE and a decrease in IgA.

PROBIOTICS AND VITAMIN D FOR SKIN HEALTH IN CHILDREN

fatty-acids (SCFA) by commensal flora helps to strengthen these TJs,²⁸ making a healthy gut microbiome essential for barrier integrity.

It has been reported that poor intestinal barrier function has led to the presence of intestinal bacteria as well as their metabolites being able to accumulate in the skin after being transported through the blood stream, and thus cause dysbiosis in the skin microbiome as well as the gut.²⁹ For example, an increased level of cresol, an amino-acid metabolite produced by *Clostridium difficile* in the gut, has been shown to be reflected by increased levels in the circulation and also in the skin, resulting in small corneocytes and reduced skin hydration,³⁰ and therefore a compromised skin barrier. Given that poor integrity of the skin barrier is one of the proposed mechanisms for eczema flares,³¹ it is important to protect gut barrier integrity so as not to further exacerbate disease pathogenesis.

It is also important to note that the skin of eczema sufferers have increased colonisation of certain bacteria, ³² and that this dysbiosis could also be reflected in the gut microbiome. Dysbiosis of the skin microbiome is due to an under-expression of antimicrobial peptides (AMPs) either by keratinocytes, sebocytes or white blood cells in the skin or a lack of commensal flora that would otherwise excrete AMPs themselves. ³³ This can result in a local immune/inflammatory response that, like that initiated in the gut, can have systemic implications. ³⁴

Therefore, not only does the integrity of barrier of the gut impact the skin, but vice versa.

c. Vitamin D and the Microbiome

Vitamin D status directly impacts the microbiome. Research has discovered that the composition and function of the bacterial community comprising the gut microbiome is dependent on **vitamin** D status, and conversely, the presence of an unhealthy microbiome can predispose an individual to **vitamin** D deficiency due to reduced capacity to absorb **vitamin** D adequately. Si Given that data reveals that >50% of newborns in Australia and New Zealand have inadequate levels of **vitamin** D, Si6,37,38,39 and the evinced link between **vitamin** D and the gut microbiome health, supplementing with **vitamin** D makes sense to support microbiome health and further, the health of the immune system.

2) The Benefits of LGG®, BB-12® in Eczema in Children (Figure2) a. Modulating the Immune System to Reduce Atopic Response

The microbiome is essential for the development and ongoing modulation of immune responses,⁴⁰ signalling TLRs in the intestinal epithelium, as well as in the skin itself,⁴¹ and balancing between Th1 and Th2 responses, and in this way, the composition of the gut microbiota can impact atopic conditions, such as eczema.

A growing body of evidence indicates that some probiotic strains can modulate the immune system at both the systemic and the mucosal levels. 42 Specific strains of probiotics may be used to support the induction of Tregs, in turn supporting the balancing of the Th1 and Th2 pathways, 43 as well as provide additional anti-inflammatory support via the stimulation of the production of immunoglobulin A (IgA), 44 and suppression of IgE. 45 Specifically, LGG®46 and BB-12®47 possess considerable

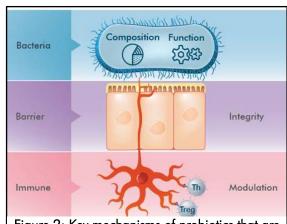


Figure 2: Key mechanisms of probiotics that are of benefit in eczema sufferers

PROBIOTICS AND VITAMIN D FOR SKIN HEALTH IN CHILDREN

immunoregulating properties, with studies highlighting these strains to be of particular benefit for eczema relief.

Lactobacillus species help to promote immune regulation by interacting with DCs residing in gastrointestinal-associated lymphoid tissue (GALT) throughout the digestive tract, as well as stimulating Tregs and increasing production of regulatory cytokines, all of which maintain healthy immune function. Specifically, the range of LGG^{\oplus} immune-regulating mechanisms is extensive; LGG^{\oplus} increases IL-10, 49 and TGF- β 2, 50 cytokines and down-regulates TNF- α , IL-6, and IFN- γ , thus promoting Th1/Th2 balance. LGG $^{\oplus}$ has also been shown to increase IgA levels, 52 as well as decrease circulating levels of IgE. 53

In addition to this, BB-12[®] also plays an important role in modulating the intestinal immune system. Studies have shown BB-12[®] to induce maturation of DCs and increase IL-10, whilst lowering IL-1 β , IL-6, IL-12, TNF- α and IFN- γ , supporting healthy immune activity. ⁵⁴

It is also of note that LGG® and BB-12®, both separately and in combination, have been shown to modulate the immune response in children specifically. Studies supporting are summarised further below.

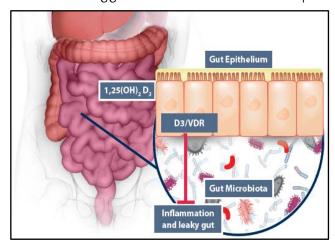
b. Supporting Gut Integrity

There is evidence to suggest that there is dysbiosis in both the gut and the skin microbiome in eczema.⁵⁵ As evinced above, dysbiosis in the gut can lead to an imbalance in immune response to stimuli, not just in the gut but systemically. Similarly, dysbiosis of the microbiota of the skin can also elicit an inflammatory response locally, and systemically.⁵⁶

Gut barrier enhancement is one of the central and most accepted mechanisms of probiotic function. Human trials have demonstrated the ability of LGG^{\circledast} to reduce intestinal permeability ^{57,58} and an *in vitro* study investigating the effects of $BB-12^{\circledast}$ on cell junctions found that supplementation significantly enhanced the integrity of transepithelial junctions. ⁵⁹ This is because LGG^{\circledast} and $BB-12^{\circledast}$ can increase the formation of SCFAs such as acetate, propionate and butyrate. ⁶⁰ These help to supply energy to the enterocytes and support gut barrier integrity via the preservation of transepithelial resistance (TER), and proteins such as occludens, E-cadherin, and β -catenin in the intercellular junctions. These points support the role of strain-specific probiotics in enhancing intestinal barrier function. ⁶¹

c. Supporting a Healthy Microbiome i. With Probiotics

The gut microbiota in non-allergic individuals has been shown to differ from allergic individuals.^{62,63} Studies have shown that numbers of *Clostridia* are higher, whereas numbers of *bifidobacteria* and *lactobacilli* groups are lower in allergy sufferers,^{64,65} suggesting that these latter species in particular offer benefits to the host that may lower allergy incidence.


Also, as previously mentioned, the production of SCFAs by commensal flora is believed to exert strong immunomodulatory effects⁶⁶ and strengthen enterocyte health.⁶⁷

It therefore makes sense to supplement probiotics that support the commensals that promote SCFA production, as well as promote microbial balance and diversity.

LGG® promotes the growth and biodiversity of *bifidobacterium*⁶⁸ and *lactobacillus/enterococcus*^{69,70} therefore contributing to increased microbial diversity to support SCFA production, mucosal barrier function⁷¹ and thus a lower incidence of allergy. **BB-12**® supplementation in infants has also been shown to increase faecal levels of *bifidobacteria*,⁷² which is particularly significant as *bifidobacteria* cross-feed

PROBIOTICS AND VITAMIN D FOR SKIN HEALTH IN CHILDREN

other important commensal species within the gut microbiota.⁷³ Further, two *in vitro* studies have also highlighted the positive effect of **BB-12**® on pathogen inhibition. In one of the studies, **BB-12**® proved antagonistic against eight of the 12 pathogens tested, including *C. difficile* and *E. coli*.⁷⁴ The second study investigated the antimicrobial action of a **BB-12**® and prebiotic combination against *E. coli* and *C. jejuni*. The results suggest that acetate and lactate producing **BB-12**® conferred a direct anti-microbial effect.⁷⁵

<u>Figure 3: Vitamin D, VDR and the microbiome in the</u> intestine¹

ii. With Vitamin D

As previously mentioned, **vitamin D** deficiency is one causative factor linked to the disruption of a healthy microbiome. The linked to the disruption of a healthy microbiome. The linked to the disruption of a healthy allergic disease states, including eczema, are more likely to have insufficient levels of **vitamin D** 777,78,79 and VDR. The linked Vitamin D and VDRs regulate host-bacterial interactions and innate immune responses of the gut microbiota, including the production of antimicrobial peptides, as well as maintain gut tolerance and barrier function, as well as maintain gut tolerance and barrier function, and inhibit inflammation (Figure 3). Further, probiotics have been shown to increase **vitamin D** and VDR in the gut.

3) Clinical Evidence to Support the Use of Probiotics and Vitamin D for Eczema in Children

Summary of Key Evidence to Support Probiotic Use in Children with Eczema							
Study	Population studied	Ingredient	Supplement duration	Equivalent daily dose	Outcome		
Sofrankova et al 2015 ⁸⁶	Pilot study of 39 children (22 allergic, 17 not allergic) aged 3 months to 3 years. Eczema sufferers had a higher lactulose/mannitol (L/M) ratio at baseline compared to controls. A higher L/M indicates increased intestinal permeability.	LGG®	6 weeks	1 billion live bacteria	Positive correlation between reduction in atopic severity using the Scoring Atopic Dermatitis (SCORAD) index, and reduction in IP using L/M ratio (P<0.05) post LGG® intervention.		
Kirjavainen PV, Salminen SJ, Isolauri E. 2003 ⁸⁷	Double-blind placebo-controlled trial of 35 infants with atopic eczema allergic to cow's milk – mean age 5.5 months. Groups received either extensively hydrolised casein formula (EHCF), EHCF + viable LGG® or EHCF + heat-inactivated LGG®.	LGG®	7.5 weeks	Formula contained LGG® concentration equivalent to 10°CFU/g. Dose varied with amount consumed by child.	Eczema symptoms were significantly alleviated in all the groups; the SCORAD scores decreased in the LGG® group. The decrease in the SCORAD scores within the viable LGG® group tended to be greater than within the placebo group. (P=0.02)		
Majamaa H, Isolauri MD. 1997 ⁸⁸	Randomised double-blind study with 27 children given extensively hydrolysed whey formula (EHWF) with (n=13) or without (n=14) LGG® . Severity of eczema was assessed with concentrations of faecal a ₁ -antitrypsin, tumour necrosis factor-a, and eosinophil cationic protein.	LGG®	1 month	Formula contained LGG® concentration equivalent to 5x108 CFU/g. Dose varied with amount consumed by child.	In the LGG® group, concentration of a ₁ -antitrypsin (P=0.03), and tumour necrosis factor-a (P=0.003) decreased significantly. Eosinophil cationic protein concentrations remained unchanged.		
Schmidt et al 2019 ⁸⁹	Randomised, placebo-controlled trial of 290 (144 probiotic group vs 146 placebo) children	LGG® and BB- 12®	6 months	1 billion live bacteria of each LGG® and BB-12®	Receiving probiotic intervention significantly lowered eczema incidence (P= 0.036)		

	aged 8-14 months, to observe				
	incidence of developing eczema.	1000	0 1	00.001:11: 1:	A
Isolauri E, et al. 2000 ⁹⁰	27 exclusively breastfed infants (mean age 4.6 months) with early onset atopic disease, were weaned to EHWF, or EHWF with BB-12® or EHWF with LGG®.	LGG® and BB- 12®	2 months	30-80 billion live bacteria – dose was dependent upon amount of formula consumed by child	A significant change in the SCORAD scores was seen in 9/9 of the patients receiving BB-12® , 9/9 in the LGG® group as compared to 4/9 in patients receiving the EHWF. (P=0.002)
Summo	ary of Key Evidence to Su	pport Pro	obiotic Use	in Children to Low	er Allergic Response
Pohjavuori et al.	Randomised, double-blind,	LGG®	4-week	10 billion live bacteria	IFN-y was significantly lower in
2004 91	Placebo-controlled trial of 119 infants (aged 1.4-11.5 months) with suspected cow's milk allergy (CMA). Participants were given LGG® (n=42), a mix of 4 strains of probiotic(n=41), or placebo (n=36). Levels of inflammatory markers produced by monocytes and lymphocytes were measured pre- and post-intervention to ascertain whether levels were associated with CMA and whether intervention improved these levels.		treatment with follow up 4 weeks later		infants with CMA (n=65) (P=0.016) and IgE-associated CMA (n=42) (P=0.003) com[pared to infants without CMA (n=54), at baseline. Post intervention, IFN-y levels were significantly increased in those in the LGG® group with CMA (n=33) (P=0.006), and in those with IgE-associated dermatitis (P=0.017), when compared to placebo group, suggesting IFN-y deficiency is related to CMA. Those receiving the probiotic mix did not have significantly increased IFN-y levels.
Berni Canani R et	Double-blind, placebo-	LGG®	Follow-ups	9.8 billion live bacteria	Supplementation of EHCF with
al. 2012 ⁹²	controlled food challenge (DBPCFC) of infants aged 1-12 months with CMA. Group 1: extensively hydrolysed casein formula (EHCF) (Nutramigen) n=22 Group 2: EHCF containing		at 6 and 12 months		LGG® accelerated the development of tolerance in infants to cow's milk protein. (P=0.03)
	LGG® (at least 14 million CFU/100 ml) (Nutramigen LGG®) n=28				
Tan-Lim CSC, Esteban-Ipac NAR 2018 ⁹³	Systematic review and meta- analysis of studies with children aged 1-12 months at baseline.	LGG®	Follow-ups performed at 12, 24, and 36 months	1.4 x 10 ⁷ CFU LGG® / 100 mL in EHCF daily. Maximum likely daily dose = 140 million live bacteria	Moderate certainty that the use of probiotics can relieve symptoms of children with cow's milk allergy. LGG® administration likely results in inducing tolerance among infants with suspected cow's milk allergy.
Berni Canani R et	Randomised control trial of	LGG®	3 year	9.8 billion live bacteria	EHCF+ LGG® reduced the incidence
al. 2017 ⁹⁴	220 children with IgE mediated cow's milk allergy (CMA) (110 in EHCF + LGG® group, and 110 in EHCF group) Median age was 5 months (interquartile range 3-8 months). Outcome assessed was oral tolerance of cow's milk, and development of other allergic manifestation (AM).		follow up		of other AM and hastens the development of oral tolerance in children with IgE-mediated CMA, more so than EHCF alone. (P<0.001)
Summa	ry of Key Evidence to Su	pport Vite	<u>amin D</u> Us		ver Allergic Response
Camargo et al. 2014 ⁹⁵	Randomised, double-blind, placebo-controlled, trial of 107 children aged 2-17 years with atopic eczema that worsens in winter.	Vitamin D drops	1 month	1000IU	Eczema Area and Severity Index (EASI) score for children receiving vitamin D was significantly more decreased than scores of those receiving placebo (P=0.01)
Di Filippo et al 2015 [%]	59 children (39 with eczema, 20 nonallergic) in a controlled intervention, measuring inflammatory markers and SCROAD indicis	Vitamin D	3 months	1000IU	SCORAD indicis were significantly reduced in the eczema group following intervention (P,0.001)

PROBIOTICS AND VITAMIN D FOR SKIN HEALTH IN CHILDREN

4) Dosage Considerations

Not recommended for use in children under 4 months of age, unless advised by a healthcare professional.

5) Safety Information Contraindications

Calcipotriene: Calcipotriene is a vitamin D analogue used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia. Theoretically, combining calcipotriene with vitamin D supplements might increase the risk of hypercalcemia. Avoid concurrent use. ⁹⁷

Calcitriol: Calcitriol is a vitamin D analogue and when used in conjunction with vitamin D supplements may have an additive effect and increase risk of vitamin D toxicity and hypercalcemia. Avoid concurrent use. 98

Cautions – Moderate level

Aluminium / aluminium-containing phosphate binders: The protein that transports calcium across the intestinal wall can also bind and transport aluminium. This protein is stimulated by vitamin D, which may therefore increase aluminium absorption. This mechanism may contribute to increased aluminium levels and toxicity in people with renal failure, when they take vitamin D and aluminium-containing phosphate binders long term. ⁹⁹ In patients with renal failure it is recommended to exercise caution when taking this combination and to only do so under medical supervision.

Calcium channel blockers: Hypercalcaemia, due to high doses of vitamin D, can reduce the effectiveness of calcium channel blockers in atrial fibrillation. Monitor and avoid vitamin D doses above 2000 IU (50 μ g) daily. ^{100,101,102}

Digoxin: Hypercalcaemia induced by high doses of vitamin D (i.e. doses > 2000 IU/day or $50 \mu g/day$) can increase the risk of fatal cardiac arrhythmias with cardiac glycosides. Use under medical supervision only and avoid vitamin D doses above 2000 IU ($50 \mu g$) daily. 103,104,105,106

Hypercalcaemia: Vitamin D doses above 2000 IU (50 μ g) daily may cause hypercalcemia and should be avoided due to the risk of increased calcium accumulation. ¹⁰⁷ For doses under 2000 IU, use caution and only under medical supervision. ^{108,109}

Hyperparathyroidism: Vitamin D doses above 2000 IU (50 μ g) daily may cause hypercalcemia and should be avoided due to the risk of increased calcium accumulation. For doses under 2000 IU, use caution and only under medical supervision. ^{110,111}

Renal failure and/or chronic kidney disease: Vitamin D doses above 2000 IU (50 μ g) daily may cause hypercalcemia and should be avoided due to the risk of increased calcium accumulation. For doses under 2000 IU, use caution and only under medical supervision. ¹¹²

Sarcoidosis or other granulomatous disease: The synthesis of vitamin D is altered by granulomatous inflammation, resulting in increased production of 1, 25-dihydroxyvitamin D. ¹¹³ Vitamin D doses above 2000 IU (50 μ g) daily should be avoided due to the risk of increased calcium accumulation. For doses under 2000 IU, use caution and only under medical supervision. ^{114,115}

Thiazide diuretics: Thiazide diuretics decrease urinary calcium excretion, which could lead to hypercalcemia if vitamin D supplements are taken concurrently. This has been reported in people being treated with vitamin D for hypoparathyroidism, and in elderly people with normal parathyroid function who

PROBIOTICS AND VITAMIN D FOR SKIN HEALTH IN CHILDREN

were taking a thiazide, vitamin D, and calcium-containing antacids daily. Use combinations of thiazides and vitamin D with caution and monitor serum calcium levels. 116,117

Verapamil: Hypercalcaemia induced by high doses of vitamin D (i.e. doses > 2000 IU/day or 50 μ g/day) can reduce the effectiveness of verapamil in atrial fibrillation. Avoid vitamin D doses above 2000 IU (50 μ g) daily and monitor serum calcium levels in people taking vitamin D and verapamil concurrently. 118,119

Cautions - Low level

Immunosuppressants: Theoretically, Lactobacillus could cause infection in patients taking medications that suppress the immune system. These include cyclosporine (Neoral, Sandimmune), tarolimus (Prograf), azathioprine (Imuran), and cancer chemotherapeutic agents like cycophosphamide (Cytoxan) and cisplatin (Platinol-AQ), and others. ^{120,121} Use only under medical supervision in these patients.

Severely ill and/or immunocompromised patients: Lactobacillus bacteraemia and sepsis have been reported in severely ill and/or immunocompromised patients consuming probiotics such as lactobacillus, though this is a very rare finding. ^{122,123} Based on these occurrences, a theoretical concern of bacteraemia and sepsis extends to bifidobacteria probiotics. ^{124,125} Use lactobacilli and bifidobacteria strains only under medical supervision in hospitalised patients.

Short-bowel syndrome: Patients with short-bowel syndrome might be predisposed to pathogenic infection from lactobacillus. This might be due to impaired gut integrity in patients with short-bowel syndrome. Use only under medical supervision in patients with this condition.^{126,127}

Pregnancy

Likely safe. While there is evidence to support the use of these ingredients during pregnancy, ^{128,129,130,131,132,133} and a review did not identify concerns for use, Practitioner discretion is advised.

Breastfeeding

Appropriate for use. 134,135,136,137,138

Children

Appropriate for use. 139,140,141 142,143

NB: Infants from 0-12 months should not exceed the UL of 25 μ g (1000 IU) of vitamin D per day. Children aged 1-18 years should not exceed the UL of 80 μ g (3200 IU) per day; ¹⁴⁴ however, much higher doses are often needed for the short-term treatment of vitamin D deficiency. Some research shows that giving vitamin D 14,000 IU/week for a year in children aged 10-17 is safe ^{145,146}; though intakes of 2000 – 3000 IU per day may cause toxicity symptoms in some children, as may doses of 1000 IU / day in hypersensitive infants. ¹⁴⁷

Prescribing Tips and Notes

Antibiotics: Concomitant administration of antibiotics might decrease the effectiveness of lactobacilli and bifidobacterium. However, concomitant use of probiotics reduces the likelihood of gastrointestinal and genitourinary side effects and co-administration is considered beneficial. Separate administration of antibiotics and lactobacillus/bifidobacterium preparations by at least two hours. 148,149,150

6) References

- ¹ Martin PE. The epidemiology of infantile eczema. Uni of Melb. 2011 Dec.
- ² Robertson CF, Dalton MF, Peat JK, Haby MM, Bauman A, Landau LI. Asthma and other atopic diseases in Australian children. Med J Aust. 1998;168(9):434-8.
- ³ Australasian Society of Clinical Immunology and Allergy (ASCIA). Eczema (atopic dermatitis) [Internet]. 2019 [cited 2019 Jul 3]. Available from: https://allergy.org.au/images/pcc/ASCIA PCC Eczema 2019.pdf
- ⁴ Eczema Association of Australasia (EAA). Facts about eczema [Internet]. Unknown publication year [cited 2019 Jul 3]. Available from: https://www.eczema.org.au/eczema-facts/
- ⁵ Page SS, Weston S, Loh R. Atopic dermatitis in children. Aust Fam Physician. 2016;45(5):293-6.
- ⁶ Jenner N, Campbell J, Marks R. Morbidity and cost of atopic eczema in Australia. Australias. J. Dermatol. 2004; 45:16–22.
- ⁷ Salem I, Ramser A, Isham N, Ghannoum MS. The gut microbiome as a major regulator of the gut-skin axis. Front. Microbiol. 2018 Jul; 9:1459
- ⁸ Perry HO, Cutaneous Manifestations of gastrointestinal disease. Postgrad Med [Internet] 1967. [cited 2020 Sep 28];41(5):501-508. Available from: doi:10.1080/00325481.1967.11696953
- 9 Salem I, Ramser A, Isham N, Ghannoum MS. The gut microbiome as a major regulator of the gut-skin axis. Front. Microbiol. 2018 Jul; 9:1459
- ¹⁰ O'Neill CA, Monteleone G, McLaughlin JT, Paus R. The gut-skin axis in health and disease: a paradigm with therapeutic implications. Bioessays [Internet] 2016 [cited 2020 Oct 12]; 38:1167–1176. Available from: doi: 10.1002/bies.201600008
- 11 O'Neill CA, Monteleone G, McLaughlin JT, Paus R. The gut-skin axis in health and disease: a paradigm with therapeutic implications. Bioessays [Internet] 2016 [cited 2020 Oct 12]; 38:1167–1176. Available from: doi: 10.1002/bies.201600008
- ¹² Gill HS. Probiotics to enhance anti-infective defenses in the gastrointestinal tract. Best Pract Res Clin Gastroenterol. [Internet] 2003 [cited 2020 Sep 28]; 17(5):755-73. Available from: https://doi.org/10.1016/S1521-6918(03)00074-X
- ¹³ Gottschick C, Raupach-Rosin H, Langer S, Hassan L, Horn J, Dorendorf E, et al. Cohort profile: The LoewenKIDS Study life-course perspective on infections, the microbiome and the development of the immune system in early childhood. Int J Epidemiol. 2019 Aug 1;48(4):1382-1383.
- ¹⁴ Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regulation of inflammation by microbiota interactions with the host. Nat Immunol. 2017 Aug;18(8):851
- 15 Rescigno M. Dendritic cells and the complexity of microbial infection. Trends Microbiol. 2002 Sep;10(9):425-61. PMID: 12217508
- ¹⁶ Zeuthen LH, Christensen HR, Frøkiaer H. Lactic acid bacteria inducing a weak interleukin-12 and tumor necrosis factor alpha response in human dendritic cells inhibit strongly stimulating lactic acid bacteria but act synergistically with gram-negative bacteria. Clin Vaccine Immunol. 2006;13(3):365
- ¹⁷ Mantis NJ, Rol N, Corthésy B. Secretory IgAs complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011 Nov 1;4(6):603-11
- 18 Corthësy B. Secretory immunoglobulin A: well beyond immune exclusion at mucosal surfaces. Immunopharmacol immunotoxicol. 2009 Jun 1;31(2):174-9
- 19 Mantis NJ, Rol N, Corthésy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011 Nov 1;4(6):603-11
- ²⁰ Mantis NJ, Rol N, Corthésy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011 Nov 1;4(6):603-11
- ²¹ Tan RA, Corren J. The relationship of rhinitis and asthma, sinusitis, food allergy, and eczema. Immunol Allergy Clin North Am. 2011 Aug 1;31(3):481-91 ²² Di Filippo P, Scaparrotta A, Rapino D, Cingolani A, Attanasi M, Petrosino MI, et al. Vitamin D supplementation modulates the immune system and improves atopic dermatitis in children. Int Arch Allergy Immunol. [Internet] 2015 [cited 2020 Oct 7]; 166:91-96. Available from:
- https://www.karger.com/Article/FullText/371350

 23 American Academy of Allergy, Asthma & Immunology (AAAAI). Atopy definition [Internet]. 2019 [cited 2019 Jul 4]. Available from: https://www.aaaai.org/conditions-and-treatments/conditions-dictionary/atopy
- ²⁴ Fasano A, Shea-Donohue T. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Gastroenterol Hepatol (N Y). 2005;2(9):416-422
- ²⁵ Kim JE, Kim HS. Microbiome of the skin and gut in atopic dermatitis (AD): Understanding the pathophysiology and finding novel management strategies. J. Clin. Med. [Internet] 2019 Apr [Cited 2020 Nov 11]; 8(4):444-467. Available from: https://doi.org/10.3390/jcm8040444
- ²⁶ Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications, Exp. Mol. Med [Online] 2018 [Cited 2020 Nov 12]; 50(103). Available from: DOI 10.1038/s12276-018-0126-x
- ²⁷ Johnson-Henry KC, Donato KA, Shen-Tu G, Gordanpour M, Sherman PM. Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157:H7-induced changes in epithelial barrier function. Infect Immun. 2008 Apr;76(4):1340-8.
- ²⁸ Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: The role of butyrate on colonic function. Aliment Pharmacol Ther. 2008: 27:104–119
- ²⁹ O'Neill, C. A., Monteleone, G., McLaughlin, J. T., and Paus, R. The gut-skin axis in health and disease: a paradigm with therapeutic implications. Bioessays. (Online) 2016 (cited 2020 Oct 12) 38, 1167–1176. Available from doi: 10.1002/bies.201600008
- ³⁰ Miyazaki K, Masuoka N, Kano M, Lizuka R. Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota. Benef Microbes 2014; 5:121–8
- 31 Salem I, Ramser A, Isham N, Ghannoum MS. The gut microbiome as a major regulator of the gut-skin axis. Front. Microbiol. 2018 Jul; 9:1459
- ³² Gallo RL, Structure and function of the human skin microbiome. Trends Microbiol. 2013 Dec;21(12):660-8.
- ³³ Gallo RL, Nakatsuji T. Microbial Symbiosis with the innate immune defence system of the skin. J Invest Dermatol [Internet] 2011 Oct [Cited 2020 Nov 3];131(10):1974-1980. Available from: doi: 10.1038/jid.2011.182
- ³⁴ Prescott SL, Larcombe DL, Logan AC, West C, Burks, W. et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J. [Internet] 2017 [Cited 2020 Nov 12];10: 29. Available from: https://doi.org/10.1186/s40413-017-0160-5
- 35 Ananthakrishnan AN. Advances in IBD: vitamin D and inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2016;12(6):513-5.
- ³⁶ Paxton GA, Teale GR, Nowson CA, Mason RS, McGrath JJ, Thompson MJ, et al. Vitamin D and health in pregnancy, infants, children and adolescents in Australia and New Zealand: a position statement. Med J Aust. 2013;198(3):1-8.
- ³⁷ Munns C, Zacharin MR, Rodda CP, Batch JA, Morley R, Cranswick NE, et al. Prevention and treatment of infant and childhood vitamin D deficiency in Australia and New Zealand: a consensus statement. MJA. 2006; 185:268-72.
- 38 Australian Bureau of statistics [online]. Feature article: vitamin D. 2014 [cited 2019 Jun 20]. Available from https://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.006Chapter2002011-12
- 39 Lucas R, Neale R. What is the optimal level of vitamin D. Separating the evidence from the rhetoric. Aust Fam Physician. 2014 Mar;43(3):119-22.
- ⁴⁰ Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C. Gut microbiota: Next frontier in understanding human health and development of biotherapeutics. Biologics. 2011; 5:71-86.

- ⁴¹ Schommer NN, Gallo RL, Structure and function of the human skin microbiome. Trends Microbiol. [Internet] 2013 [cited 2020 Oct 12) Dec;21(12):660-8. Available from: doi: 10.1016/j.tim.2013.10.001
- ⁴² Braun L, Cohen M. Herbs and natural supplements: an evidence-based guide. 4th ed. Vol 2. Sydney (AU): Elsevier/Churchill Livingstone; 2015. p. 773-4; 781-2.
- ⁴³ Cuello-Garcia CA, Brożek JL, Fiocchi A, Pawankar R, Yepes-Nuñez JJ, Terracciano L et al. Probiotics for the prevention of allergy: A systematic review and meta-analysis of randomized controlled trials. J. Allergy Clin. Immunol. 2015 Oct 31;136(4):952-61.
- ⁴⁴ Dang D, Zhou W, Lun ZJ, Mu X, Wang DX, Wu H. Meta-analysis of probiotics and/or prebiotics for the prevention of eczema. J. Int. Med. Res. 2013 Oct 1;41(5):1426-36.
- ⁴⁵ Cuello-Garcia CA, Brożek JL, Fiocchi A, Pawankar R, Yepes-Nuñez JJ, Terracciano L et al. Probiotics for the prevention of allergy: A systematic review and meta-analysis of randomized controlled trials. J. Allergy Clin. Immunol. 2015 Oct 31;136(4):952-61.
- ⁴⁶ Zeuthen LH, Christensen HR, Frøkiaer H. Lactic acid bacteria inducing a weak interleukin-12 and tumor necrosis factor alpha response in human dendritic cells inhibit strongly stimulating lactic acid bacteria but act synergistically with gram-negative bacteria. Clin Vaccine Immunol. 2006:13(3):365.
- ⁴⁷ Jungersen M, Wind A, Johansen E, Christensen JE, Stuer-Lauridsen B, Eskesen D. The science behind the probiotic strain *Bifidobacterium animalis* subsp. *lactis* BB-12®. Microorganisms. 2014 Mar;2(2):92-110.
- ⁴⁸ Zeuthen LH, Christensen HR, Frøkiaer H. Lactic acid bacteria inducing a weak interleukin-12 and tumor necrosis factor alpha response in human dendritic cells inhibit strongly stimulating lactic acid bacteria but act synergistically with gram-negative bacteria. Clin Vaccine Immunol. 2006;13(3):365.
- ⁴⁹ Schultz M, Linde HJ, Lehn N, Zimmermann K, Grossmann J, Falk W, et al. Immunomodulatory consequences of oral administration of *Lactobacillus rhamnosus* strain GG in healthy volunteers. J Dairy Res. 2003;70(2):165-73.
- ⁵⁰ Cuello-Garcia CA, Brożek JL, Fiocchi A, Pawankar R, Yepes-Nuñez JJ, Terracciano L et al. Probiotics for the prevention of allergy: A systematic review and meta-analysis of randomized controlled trials. J. Allergy Clin. Immunol. 2015 Oct 31;136(4):952-61.
- ⁵¹ Schultz M, Linde HJ, Lehn N, Zimmermann K, Grossmann J, Falk W, et al. Immunomodulatory consequences of oral administration of *Lactobacillus rhamnosus* strain GG in healthy volunteers. J Dairy Res. 2003 May;70(2):165-73.
- ⁵² Piirainen L, Haahtela S, Helin T, Korpela R, Haahtela T, Vaarala O. Effect of *Lactobacillus rhamnosus* GG on rBet v1 and rMal d1 specific IgA in the saliva of patients with birch pollen allergy. Ann Allergy Asthma Immunol. 2008 Apr;100(4):338-42.
- ⁵³ Cuello-Garcia CA, Brozek JL, Fiocchi A, Pawankar R, Yepes-Nuñez JJ, Terracciano L et al. Probiotics for the prevention of allergy: A systematic review and meta-analysis of randomized controlled trials. J. Allergy Clin. Immunol. 2015 Oct 31;136(4):952-61.
- ⁵⁴ Jungersen M, Wind A, Johansen E, Christensen JE, Stuer-Lauridsen B, Eskesen D. The science behind the probiotic strain *Bifidobacterium animalis* subsp. *lactis* BB-12®. Microorganisms. 2014 Mar;2(2):92-110.
- ⁵⁵ Kim JE, Kim HS, Microbiome of the skin and gut in atopic dermatitis (AD): Understanding the pathophysiology and finding novel management strategies. J. Clin. Med. [Internet] 2019 Apr [Cited 2020 Nov 11]; 8(4):444-467. Available from: https://doi.org/10.3390/jcm8040444
- ⁵⁶ Prescott SL, Larcombe DL, Logan AC, West C, Burks, W. et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organization J. [Internet] 2017 [cited 2020 Nov 11];10: 29. Available from: https://doi.org/10.1186/s40413-017-0160-5
- ⁵⁷ Francavilla R, Miniello V, Magistà AM, De Canio A, Bucci N, Gagliardi F et al. A randomized controlled trial of *Lactobacillus* GG in children with functional abdominal pain. Pediatrics. 2010 Dec;126(6): e1445-52
- ⁵⁸ Gupta P, Andrew H, Kirschner BS, Guandalini S. Is *Lactobacillus* GG helpful in children with Crohn's disease? Results of a preliminary, open-label study. J Pediatr Gastroenterol Nutr. 2000 Oct;31(4):453-7.
- ⁵⁹ Commane DM, Shortt CT, Silvi S, Cresci A, Hughes RM, Rowland IR. Effects of fermentation products of pro- and prebiotics on trans-epithelial electrical resistance in an in vitro model of the colon. Nutr Cancer. 2005;51(1):102-9.
- ⁶⁰ Flint HJ, Duncan SH, Scott KP, et al. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015 Feb;74(1):13-22
- ⁶¹ Castoldi A, Favero de Aguiar C, Moraes-Vieira PM, Camara NOS. They must hold tight: junction proteins, microbiota and immunity in intestinal mucosa. Curr Prot Pept Sci. 2015; 16:655-71.
- ⁶² Prakash Ś, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C. Gut microbiota: Next frontier in understanding human health and development of biotherapeutics. Biologics. 2011; 5:71-86.
- ⁶³ Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol [Internet] 2001 Jan [cited 2020 Nov 10];107(1):129-34. Available from: https://doi.org/10.1067/mai.2001.111237
- ⁶⁴ Sjogren YM, Jenmalm MC, Bottcher MF, Bjorksten B, Sverremark-Ekstrom E. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy. 2009; 39:518–526.
- 65 Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol [Internet] 2001 Jan [cited 2020 Nov 10];107(1):129-34. Available from: https://doi.org/10.1067/mai.2001.111237
- ⁶⁶ Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C. Gut microbiota: Next frontier in understanding human health and development of biotherapeutics. Biologics. 2011; 5:71-86.
- ⁶⁷ Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: The role of butyrate on colonic function. Aliment Pharmacol Ther. 2008; 27:104–119.
- ⁶⁸ Pärtty A, Lehtonen L, Kalliomäki M, Salminen S, Isolauri E. Probiotic Lactobacillus rhamnosus GG therapy and microbiological programming in infantile colic: a randomized, controlled trial. Pediatr Res. 2015 Oct;78(4):470-5.
- ⁶⁹ Rinne M, Kalliomaki M, Arvilommi H, Salminen S, Isolauri E. Effect of probiotics and breastfeeding on the bifidobacterium and lactobacillus/enterococcus microbiota and humoral immune responses. J Pediatr. 2005;147(2):186-91.
- ⁷⁰ Berni Canani R, Sangwan N, Stefka AT, Nocerino R, Papaero L, Aitoro R, et al. *Lactobacillus rhamnosus* GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 2016 Mar;10(3):742-50.
- ⁷¹ Lee Y, Salminen S. Lactobacillus rhamnosus GG. In: Handbook of Probiotics and Prebiotics. 2nd ed. Hoboken: John Wiley & Sons. 2009:469-473
- ⁷² Fukushima Y, Kawata Y, Hara H, Terada A, Mitsuoka T. Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int J Food Microbiol. 1998; 42:39-44.
- ⁷³ Turroni F, Milani C, Duranti S, Ferrario C, Lugli GA, Mancabelli L, et al. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell Mol Life Sci. 2018 Jan;75(1):103-118.
- ⁷⁴ Martins FS, Silva AA, Vieira AT, Barbosa FH, Arantes RM, Teixeira MM, et al. Comparative study of *Bifidobacterium animalis*, *Escherichia coli*, *Lactobacillus* casei and *Saccharomyces boulardii* probiotic properties. Arch Microbiol. 2009 Aug 1;191(8):623-30.
- ⁷⁵ Jungersen M, Wind A, Johansen E, Christensen JE, Stuer-Lauridsen B, Eskesen D. The science behind the probiotic strain *Bifidobacterium animalis* subsp. *lactis* BB-12®. Microorganisms. 2014 Mar;2(2):92-110.
- ⁷⁶ Yamamoto EA, Jorgensen TN. Relationships between vitamin D, gut microbiome, and systematic autoimmunity. Front. Immunol. 2020; 10:3141.

- ⁷⁷ Rosendahl J, Fogelholm M, Pelkonen A, Mäkelä MJ, Mäkitie O, Erkkola M. A history of cow's milk allergy is associated with lower vitamin D status in schoolchildren. Horm Res Paediatr. 2017;88(3-4):244-250.
- ⁷⁸ Silva CM, Silva SAD, Antunes MMC, Silva GAPD, Sarinho ESC, Brandt KG. Do infants with cow's milk protein allergy have inadequate levels of vitamin D? J Pediatr (Rio J). 2017 Nov Dec;93(6):632-638.
- 79 Elsori DH., Hammoud MS. Vitamin D deficiency in mothers, neonates and children. J. Steroid Biochem. Mol. Bio. 2018;175, 195–199
- ⁸⁰ Daniluk U, Filimoniuk A, Kowalczuk-Krystoń M, Alifier M, Karpińska J, Kaczmarski M G, et al. Association of antioxidants and vitamin D level with inflammation in children with atopic dermatitis. Int. J. Dermatol. 2019 Sep;58(9):1056-61
- ⁸¹ Xiang J, Wang H, Li T. Comorbidity of vitamin A and vitamin D deficiency exacerbates the severity of atopic dermatitis in children. Dermatol. 2019; 235:196-204.
- ⁸² Luthold RV, Fernandes GR, Franco-de-Moraes AC, Folchetti LG, Ferreira SR. Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals. Metabolism. 2017 Apr; 69:76-86.
- 83 Shang M, Sun J. Vitamin D/VDR, probiotics, and gastrointestinal diseases. Curr Med Chem. 2017;24(9):876-887.
- 84 Sun J. Dietary vitamin D, vitamin D receptor, and microbiome. Curr Opin Clin Nutr Metab Care. 2018;21(6):471-4.
- ⁸⁵ Jones ML, Martoni CJ, Prakash S. Oral supplementation with probiotic *L. reuteri* NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J Clin Endocrinol Metab. 2013;98(7):2944-51.
- ⁸⁶ Sofrankova, L Jakusova L, Kohutova M, Marusiakova L, Petrovicova O, Simekova M, et al. Intestinal permeability and SCORAD of children with atopic dermatitis after six weeks supplementation of *Lactobacillus rhamnosus* GG (the pilot study). Čes-slov Pediat. 2015;70(5):273-80.
- ⁸⁷ Kirjavainen PV, Salminen SJ, Isolauri E, Probiotic bacteria in the management of atopic disease: underscoring the importance of viability. J. Pediatr. Gastroenterol. Nutr. 2003:36:223-27.
- 88 Majamaa H, Isolauri E, Probiotics: A novel; approach in the management of food allergy, J Allergy Clin Immunol. 1997 Feb:99(2); 179-185.
- ⁸⁹ Schmidt RM, Laursen RP, Bruun S, Larnkjaer A, Molgaard C, Michaelsen KF, et al. Probiotics in late infancy reduce the incidence of eczema: A randomised controlled trial. Pediatr Allergy Immunol. 2019;1-6.
- 90 Isolauri E, Arvola T, Sutas Y, Moilanen E, Salminen S. Probiotics in the management of atopic eczema. Clin. Exp. Allergy. 2000:30;1604-1610.
- ⁹¹ Pohjavuori E, Viljanen M, Korpela R, Kuitunen M, Tiittanen M, Vaarala O et al. *Lactobacillus* GG effect in increasing IFN-y production in infants with cow's milk allergy. J Allergy Clin Immunol. 2004 Jul: 114(1);131-36
- 92 Berni Canani R, Nocerino R, Terrin G, Coruzzo A, Cosenza L, Leone L, et al. Effect of *Lactobacillus* GG on tolerance acquisition in infants with cow's milk allergy: A randomized trial. J Allergy Clin. Immunol. 2012 Feb: 129(2): 580-88.
- 93 Tan-Lim CSC, Esteban-Ipac NAR. Probiotics as treatment for food allergies among pediatric patients: a meta-analysi. World Allergy Organ. J. 2018; 11:25.
- ⁹⁴ Berni Canani R, Di Costanzo D, Bedgoni G, Amoroso A, Cosenza L, Di Scala C, et al. Extensively hydrolyzed casein formula containing *Lactobacillus rhamnosus* GG reduces the occurrence of other allergic manifestations in children with cow's milk allergy: 3-year randomized controlled trial. J Allergy Clin. Immunol. 2017: 139 (6);1906-1918.
- 95 Camargo CA, Ganmaa D, Sidbury R, Erdenedelger K, Radnaakhand N, Khandsuren B. Randomized trial of vitamin D supplementation for winter-related atopic dermatitis in children. J Allergy. Clin. Immunol. 2014: 134(4);831-837.
- ⁹⁶ Di Filippo P, Scaparrotta A, Rapino D, Cingolani A, Attanasi M, Petrosino MI et al. Vitamin D supplementation modulates the immune system and improves atopic dermatitis in children. Int Arch Allergy Immunol 2015; 166:91–96.
- ⁹⁷Natural Medicines Comprehensive Database. [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2008. Vitamin D [cited 2018 September 28]. Available from: http://www.naturaldatabase.com, subscription required to view.
- 98 Stargrove MB, Treasure J, McKee DL. Herb, nutrient, and drug interactions. St Louis (MO): Mosby Elsevier; 2010. p. 399-421.
- ⁹⁹Natural Medicines Comprehensive Database. [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2008. Vitamin D [cited 2018 September 28]. Available from: http://www.naturaldatabase.com. subscription required to view.
- ¹⁰⁰ Natural Medicines Comprehensive Database. [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2008. Vitamin D [cited 2018 September 28]. Available from: http://www.naturaldatabase.com. subscription required to view.
- 101 Braun L, Cohen M. Herbs and natural supplements: an evidence-based guide. 4th ed. Vol 2. Sydney (AU): Elsevier/Churchill Livingstone; 2015. p. 1125-
- 102 Stargrove MB, Treasure J, McKee DL. Herb, nutrient, and drug interactions. St Louis (MO): Mosby Elsevier; 2010. p. 399-421.
- ¹⁰³ Natural Medicines Comprehensive Database. [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2008. Vitamin D [cited 2018 September 28]. Available from: http://www.naturaldatabase.com. subscription required to view.
- 104 Braun L, Cohen M. Herbs and natural supplements: an evidence-based guide. 4th ed. Vol 2. Sydney: Elsevier/Churchill Livingstone. 2015. p. 1125-1146.
 105 IM Gateway [Internet]. Unity Health Proprietary Limited; 2001-2018. Vitamin D [cited 2018 September 28]. Available from: http://www.imgateway.net/page.jsp?p_name=InteractionsDatabase subscription required to view.
- 106 Ulbricht CE. Vitamin D. In: Natural Standard. Herb & Supplement Guide. An evidence-based reference. Maryland heights (MIS): Mosby Elsevier. 2010. p. 741-5.
- ¹⁰⁷ Natural Medicines Comprehensive Database. [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2008. Vitamin D [cited 2018 September 28]. Available from: http://www.naturaldatabase.com. subscription required to view.
- ¹⁰⁸ Natural Medicines Comprehensive Database. [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2008. Vitamin D [cited 2018 September 28]. Available from: http://www.naturaldatabase.com. subscription required to view.
- 109 Stargrove MB, Treasure J, McKee DL. Herb, nutrient, and drug interactions. St Louis (MO): Mosby Elsevier; 2010. p. 399-421.
- 110 Natural Medicines Comprehensive Database. [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2008. Vitamin D [cited 2018 September 28]. Available from: http://www.naturaldatabase.com. subscription required to view.
- 111 Stargrove MB, Treasure J, McKee DL. Herb, nutrient, and drug interactions. St Louis (MO): Mosby Elsevier; 2010. p. 399-421.
- 112 Natural Medicines Comprehensive Database. [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2008. Vitamin D [cited 2018 September 28]. Available from: http://www.naturaldatabase.com. subscription required to view.
- 113 Burke RR, Rybicki BA, Rao DS. Calcium and vitamin D in sarcoidosis: how to assess and manage. In: Seminars in respiratory and critical care medicine. Thieme Medical Publishers. 2010;31(4):474-484.
- 114 Natural Medicines Comprehensive Database. [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2008. Vitamin D [cited 2018 September 28]. Available from: http://www.naturaldatabase.com. subscription required to view.
- 115 Stargrove MB, Treasure J, McKee DL. Herb, nutrient, and drug interactions. St Louis (MO): Mosby Elsevier; 2010. p. 399-421.
- 116 Natural Medicines Comprehensive Database. [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2008. Vitamin D [cited 2018 September 28]. Available from: http://www.naturaldatabase.com. subscription required to view.

- 117 Ulbricht CE. Vitamin D. In: Natural Standard. Herb & Supplement Guide. An evidence-based reference. Maryland heights (MIS): Mosby Elsevier. 2010. p. 741-5.
- 118 Natural Medicines Comprehensive Database. [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2008. Vitamin D [cited 2018 September 28]. Available from: http://www.naturaldatabase.com. subscription required to view.
- 119 Stargrove MB, Treasure J, McKee DL. Herb, nutrient, and drug interactions. St Louis (MO): Mosby Elsevier; 2010. p. 399-421.
- ¹²⁰ Natural Medicines Comprehensive Database [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2018. *Lactobacillus*; updated 2018 Mar 13 [cited 2018 Mar 15]. Available from: https://naturalmedicines.therapeuticresearch.com/. Subscription required to view.
- 121 Braun L, Cohen M. Herbs and natural supplements: an evidence-based guide. 4th ed. Vol 2. Sydney (AU): Elsevier/Churchill Livingstone; 2015. p. 771-96.
 122 Natural Medicines Comprehensive Database [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2018. Lactobacillus [updated 2018 Mar 13; cited 2018 Mar 15]. Available from: https://naturalmedicines.therapeuticresearch.com/. Subscription required to view.
- ¹²³ Braun L, Cohen M. Herbs and natural supplements: an evidence-based guide. 4th ed. Vol 2. Sydney (AU): Elsevier/Churchill Livingstone; 2015. p. 771-96. ¹²⁴Natural Medicines Comprehensive Database [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2018. *Bifidobacteria*; [cited 2017 Mar 30]. Available from: https://naturalmedicines.therapeuticresearch.com/. Subscription required to view.
- 125 Braun L, Cohen M. Probiotics In: Herbs and natural supplements: an evidence-based guide. 4th ed. Vol 2. Sydney: Elsevier/Churchill Livingstone. 2015:771-96.
- 126 Natural Medicines Comprehensive Database [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2018. Lactobacillus; updated 2018 Mar 13 [cited 2018 Mar 15]. Available from: https://naturalmedicines.therapeuticresearch.com/. Subscription required to view.
- 127 Braun L, Cohen M. Herbs and natural supplements: an evidence-based guide. 4th ed. Vol 2. Sydney (AU): Elsevier/Churchill Livingstone; 2015. p. 771-96. 128 Elias J, Bozzo P, Einarson A. Are probiotics safe for use during pregnancy and lactation? Can Fam Physician. 2011 Mar;57(3):299-301.
- ¹²⁹ Laitinen K, Poussa T, Isolauri E; Nutrition, allergy, mucosal immunology, and intestinal microbiota group. Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. Br J Nutr. 2009 Jun;101(11):1679-87.
- ¹³⁰ Luoto R, Laitinen K, Nermes M, Isolauri E. Impact of maternal probiotic-supplemented dietary counselling on pregnancy outcome and prenatal and postnatal growth: a double-blind, placebo-controlled study. Br J Nutr. 2010 Jun;103(12):1792-9.
- ¹³¹ Hajifaraji M, Jahanjou F, Abbasalizadeh F, Aghamohammadzadeh N, Abbasi MM, Dolatkhah N. Effect of probiotic supplements in women with gestational diabetes mellitus on inflammation and oxidative stress biomarkers: a randomized clinical trial. Asia Pac J Clin Nutr. 2018;27(3):581–91.
- 132 Dotterud CK, Avershina E, Sekelja M, et al. Does maternal perinatal probiotic supplementation alter the intestinal microbiota of mother and child? J Pediatr Gastroenterol Nutr. 2015;61(2):200–207.
- 133 National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand [Internet]. Canberra ACT: Australian Government. 2014 Sept 4. Vitamin D [cited 2020 Jul 30]. Available from: https://www.nrv.gov.au/nutrients/vitamin-d.
- 134 Elias J, Bozzo P, Einarson A. Are probiotics safe for use during pregnancy and lactation? Can Fam Physician. 2011 Mar;57(3):299-301.
- 135 Fernández L, Langa S, Martín V, Jiménez E, Martín R, Rodríguez JM. The microbiota of human milk in healthy women. Cell Mol Biol (Noisy-le-grand). 2013 Nov 3:59(1):31-42.
- ¹³⁶ Laitinen K, Poussa T, Isolauri E; Nutrition, allergy, mucosal immunology, and intestinal microbiota group. Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. Br J Nutr. 2009 Jun;101(11):1679-87.
- ¹³⁷ Luoto R, Laitinen K, Nermes M, Isolauri E. Impact of maternal probiotic-supplemented dietary counselling on pregnancy outcome and prenatal and postnatal growth: a double-blind, placebo-controlled study. Br J Nutr. 2010 Jun;103(12):1792-9.
- 138 National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand [Internet]. Canberra ACT: Australian Government. 2014 Sept 4. Vitamin D [cited 2020 Jul 30]. Available from: https://www.nrv.gov.au/nutrients/vitamin-d.
- 139 Elias J, Bozzo P, Einarson A. Are probiotics safe for use during pregnancy and lactation? Can Fam Physician. 2011 Mar;57(3):299-301.
- ¹⁴⁰ Laitinen K, Poussa T, Isolauri E; Nutrition, allergy, mucosal immunology, and intestinal microbiota group. Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. Br J Nutr. 2009 Jun;101(11):1679-87.
- ¹⁴¹ Luoto R, Laitinen K, Nermes M, Isolauri E. Impact of maternal probiotic-supplemented dietary counselling on pregnancy outcome and prenatal and postnatal growth: a double-blind, placebo-controlled study. Br J Nutr. 2010 Jun;103(12):1792-9.
- ¹⁴² Braun L, Cohen M. Herbs and natural supplements: an evidence-based guide. 4th ed. Vol 2. Sydney (AU): Elsevier/Churchill Livingstone; 2015. p. 776-777-96.
- ¹⁴³ Kalliomäki M, Salminen S, Poussa T, Arvilommi H, Isolauri E. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet. 2003 May 31;361(9372):1869-71.
- 144 National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand [Internet]. Canberra (ACT): Australian Government. 2014 Sept 4. Vitamin D [cited 2020 Jul 30]. Available from: https://www.nrv.gov.au/nutrients/vitamin-d.
- 145 Natural Medicines Comprehensive Database [database on the Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2008 Vitamin D [cited 2018 September 28]. Available from: http://www.naturaldatabase.com. subscription required to view.
- 146 Baghurst K. Vitamin D. In: Nutrient References Values for Australia and New Zealand. Australian Government: Department of Health and Ageing, National Health and Medical Research Council, Canberra. 2005. p. 127-38.
- 147 Stargrove MB, Treasure J, McKee DL. Herb, nutrient, and drug interactions. St Louis (MO): Mosby Elsevier; 2010. p. 399-421.
- ¹⁴⁸ Natural Medicines Comprehensive Database [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2018 *Lactobacillus* updated 2018 Mar 13; [cited 2018 Mar 15]. Available from: https://naturalmedicines.therapeuticresearch.com/. Subscription required to view.
- ¹⁴⁹ Natural Medicines Comprehensive Database [Internet]. Stockton CA: Therapeutic Research Faculty; 1995-2018 *Bifidobacteria*; [cited 2017 Mar 30]. Available from: https://naturalmedicines.therapeuticresearch.com/. Subscription required to view.
- 150 Braun L, Cohen M. Herbs and natural supplements: an evidence-based guide. 4th ed. Vol 2. Sydney (AU): Elsevier/Churchill Livingstone; 2015. p. 771-96.